Odpowiedzi przesyłam z załącznikach. Na płaszczyźnie dane są cztery punkty A(1,2),B(5,4)C(3,6),D(0,8) Przez punkt D poprowadzono prostą l prostopadłą do prostej AB ,znajdź na prostej l taki punkt E,aby pole ABC było równe polu trójkąta ABE !!!!1
Punkty \(A=(-2,-1)\) i \(B=(2,2)\) są wierzchołkami trójkąta równobocznego \(ABC\). Wysokość tego trójkąta jest równa A.\( 2{,}5 \) B.\( 2\sqrt{3} \) C.\( 5\sqrt{3} \) D.\( 2{,}5\sqrt{3} \) DPole trójkąta \(ABC\) o wierzchołkach \(A=(0,0)\), \(B=(4,2)\), \(C=(2,6)\) jest równe A.\( 5 \) B.\( 10 \) C.\( 15 \) D.\( 20 \) Wyznacz równanie symetralnej odcinka o końcach \(A = (-2,2)\) i \(B = (2,10)\).\(y=-\frac{1}{2}x+6\)Wyznacz równanie prostej zawierającej środkową \(CD\) trójkąta \(ABC\), którego wierzchołkami są punkty \(A=(-2, -1)\), \(B = (6, 1)\), \(C = (7, 10)\).\(y=2x-4\)Dany jest trójkąt równoramienny \(ABC\), w którym \(|AC| = |BC|\) oraz \(A = (2, 1)\) i \(C = (1, 9)\). Podstawa \(AB\) tego trójkąta jest zawarta w prostej \(y=\frac{1}{2}x\). Oblicz współrzędne wierzchołka \(B\).\(B=\left( \frac{34}{5}, \frac{34}{10} \right)\)Wyznacz współrzędne punktu \(A'\), który jest symetryczny do punktu \(A = (3, 2)\) względem prostej \(y=-\frac{1}{3}x-6\).\(B=\left(-2\frac{4}{10};\ -14\frac{2}{10}\right)\)Punkty \(A = (-3, 4)\) i \(C = (1,3)\) są wierzchołkami kwadratu \(ABCD\). Wyznacz równanie prostej zawierającej przekątną \(BD\) tego kwadratu.\(y=4x+\frac{15}{2}\)Punkty \(A=(-1, 2)\) i \(B=(5, -2)\) są dwoma sąsiednimi wierzchołkami rombu \(ABCD\). Obwód tego rombu jest równy A.\( \sqrt{13} \) B.\( 13 \) C.\( 676 \) D.\( 8\sqrt{13} \) DPunkty \(A=(-1,-5), B=(3,-1)\) i \(C=(2,4)\) są kolejnymi wierzchołkami równoległoboku \(ABCD\). Oblicz pole tego równoległoboku.\(P=24\)Punkty \(A=(-2,4)\) i \(C=(-6,2)\) są przeciwległymi wierzchołkami kwadratu \(ABCD\). Zatem promień okręgu opisanego na tym kwadracie jest równy: A.\( 10 \) B.\( 2 \) C.\( \sqrt{5} \) D.\( \sqrt{10} \) COkrąg o środku w punkcie \( S=(-3,4) \) jest styczny do prostej o równaniu \( y=-\frac{4}{3}x+\frac{25}{3} \). Oblicz współrzędne punktu styczności. \((1,7)\)Obrazem punktu \( A=(4,-5) \) w symetrii względem osi \( Ox \) jest punkt: A.\((-4,-5) \) B.\((-4,5) \) C.\((4,5) \) D.\((4,-5) \) CPunkt \( C=(0,2) \) jest wierzchołkiem trapezu \( ABCD \), którego podstawa \( AB \) jest zawarta w prostej o równaniu \( y=2x-4 \). Wskaż równanie prostej zawierającej podstawę \( CD \). A.\(y=\frac{1}{2}x+2 \) B.\(y=-2x+2 \) C.\(y=-\frac{1}{2}x+2 \) D.\(y=2x+2 \) DWierzchołki trapezu \(ABCD\) mają współrzędne: \(A=(-1,-5)\), \(B=(5, 1)\), \(C=(1, 3)\), \(D=(-2, 0)\). Napisz równanie okręgu, który jest styczny do podstawy \(AB\) tego trapezu, a jego środek jest punktem przecięcia się prostych zawierających ramiona \(AD\) oraz \(BC\) trapezu \(ABCD\).\((x+3)^2+(y-5)^2=72\)Proste \(l\) i \(k\) przecinają się w punkcie \(A = (0, 4)\). Prosta \(l\) wyznacza wraz z dodatnimi półosiami układu współrzędnych trójkąt o polu \(8\), zaś prosta \(k\) – trójkąt o polu \(10\). Oblicz pole trójkąta, którego wierzchołkami są: punkt \(A\) oraz punkty przecięcia prostych \(l\) i \(k\) z osią \(Ox\).\(P=2\); punkty przecięcia, to: \((4;0)\) oraz \((5;0)\)Dane są wierzchołki trójkąta \(ABC\): \(A = (2, 2)\) , \(B = (9, 5)\) i \(C = (3, 9)\). Z wierzchołka \(C\) poprowadzono wysokość tego trójkąta, która przecina bok \(AB\) w punkcie \(D\). Wyznacz równanie prostej przechodzącej przez punkt \(D\) i równoległej do boku \(BC\).\(y=-\frac{2}{3}x+\frac{204}{29}\)W układzie współrzędnych dane są punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta \(AB\) przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).\(x=-7\)Punkty \(A = (3, 2)\) i \(C\) są przeciwległymi wierzchołkami kwadratu \(ABCD\), a punkt \(O = (6,5)\) jest środkiem okręgu opisanego na tym kwadracie. Współrzędne punktu \(C\) są równe A.\( (9,8) \) B.\( (15,12) \) C.\( \left(4\frac{1}{2},3\frac{1}{2}\right) \) D.\( (3,3) \) A
zad.1 Dane są punkty A(-35,-2),B(-31,-4)C,(202,4)i D(206,2). Czy proste AB i CD są równoległe ? Odpowiedz uzasadnij zad.2 Liczba 5,5 jest przybliżeniem liczby x . Wiadomo ,że błąd bezwzględny tego przybliżenia nie przekracza 0,02 .Wyznacz zbiór możliwych wartości
Przejdź do zawartości Ile dni do matury?KontaktMoje kontoKoszyk Kursy WideoKursy E-bookKorepetycjeFiszkiNotatki i ZadaniaO NasBlog Geometria analitycznaPiotr Tomkowski2021-09-18T15:16:21+02:00 Zadania maturalne z Matematyki Tematyka: geometria analityczna. Zadania pochodzą z oficjalnych arkuszy maturalnych CKE, które służyły przeprowadzaniu majowych egzaminów. Czteroznakowy kod zapisany przy każdym zadaniu wskazuje na jego pochodzenie: S/N – „stara”/”nowa” formuła; P/R – poziom podstawowy/rozszerzony; np. 08 – rok 2008. Zbiór zadań maturalnych w formie arkuszy, możesz pobrać >> TUTAJ <<. Zadanie 1. (NP15) Dane są punkty M=(−2,1) i N=(−1,3). Punkt K jest środkiem odcinka MN. Obrazem punktu K w symetrii względem początku układu współrzędnych jest punkt: Zadanie 2. (NP15) W układzie współrzędnych dane są punkty A=(−43,−12), B=(50,19). Prosta AB przecina oś Ox w punkcie P. Oblicz pierwszą współrzędną punktu P. Zadanie 3. (NP16) W układzie współrzędnych dane są punkty A=(a,6) oraz B=(7,b). Środkiem odcinka AB jest punkt M=(3,4). Wynika stąd, że: Zadanie 4. (NP17) Dany jest okrąg o środku S=(2,3) i promieniu r=5. Który z podanych punktów leży na tym okręgu? Zadanie 5. (NP17) Dane są punkty A=(−4,0) i M=(2,9) oraz prosta k o równaniu y=−2x+10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta ABC. Zadanie 6. (NP18) Punkt K=(2,2) jest wierzchołkiem trójkąta równoramiennego KLM, w którym |KM|=|LM|. Odcinek MN jest wysokością trójkąta i N=(4,3). Zatem: Zadanie 7. (NP18) W układzie współrzędnych punkty A=(4,3) i B=(10,5) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y=2x+3. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty. Zadanie 8. (SP15) Dane są punkty M=(3,−5) oraz N=(−1,7). Prosta przechodząca przez te punkty ma równanie: Zadanie 9. (SP15) Dane są punkty P=(−2,−2), Q=(3,3). Odległość punktu P od punktu Q jest równa: Zadanie 10. (SP15) Punkt K=(−4,4) jest końcem odcinka KL, punkt L leży na osi Ox, a środek S tego odcinka leży na osi Oy. Wynika stąd, że: Zadanie 11. (SP15) Okrąg przedstawiony na rysunku ma środek w punkcie O=(3,1) i przechodzi przez punkty S=(0,4) i T=(0,−2). Okrąg ten jest opisany przez równanie: Zadanie 12. (SP14) Liczba punktów wspólnych okręgu o równaniu (x+2)2+(y−3)2=4 z osiami układu współrzędnych jest równa: Zadanie 13. (SP13) Punkty A=(−1,2) i B=(5,−2) są dwoma sąsiednimi wierzchołkami rombu ABCD. Obwód tego rombu jest równy: Zadanie 14. (SP13) Punkt S=(−4,7) jest środkiem odcinka PQ, gdzie Q=(17,12). Zatem punkt P ma współrzędne: Zadanie 15. (SP13) Odległość między środkami okręgów o równaniach (x+1)2+(y−2)2=9 oraz x2+y2=10 jest równa: Zadanie 16. (SP12)| Punkt A ma współrzędne (5,2012). Punkt B jest symetryczny do punktu A względem osi Ox, a punkt C jest symetryczny do punktu B względem osi Oy . Punkt C ma współrzędne: Zadanie 17. (SP12)| Na okręgu o równaniu (x−2)2+(y+7)2=4 leży punkt: Zadanie 18. (SP12) Wyznacz równanie symetralnej odcinka o końcach A=(−2,2) i B=(2,10). Zadanie 19. (SP11) Prosta k ma równanie y=2x−3. Wskaż równanie prostej l równoległej do prostej k i przechodzącej przez punkt D o współrzędnych (−2,1). Zadanie 20. (SP11) Styczną do okręgu (x−1)2+y2−4=0 jest prosta równaniu: Zadanie 21. (SP11) Okrąg o środku w punkcie S=(3,7) jest styczny do prostej o równaniu y=2x−3. Oblicz współrzędne punktu styczności. Zadanie 22. (SP10) Wskaż równanie okręgu o promieniu 6. Zadanie 23. (SP10) Punkty A=(−5,2) i B=(3,−2) są wierzchołkami trójkąta równobocznego ABC. Obwód tego trójkąta jest równy: Zadanie 24. (SP09) Punkty B = (0,10) i O = (0,0) są wierzchołkami trójkąta prostokątnego OAB, w którym |∡OAB |=. Przyprostokątna OA zawiera się w prostej o równaniu y = x . Oblicz współrzędne punktu A i długość przyprostokątnej OA. Zadanie 25. (SP08) Na poniższym rysunku przedstawiono łamaną ABCD , która jest wykresem funkcji y = f(x). Korzystając z tego wykresu: a) Zapisz w postaci przedziału zbiór wartości funkcji f, b) Podaj wartość funkcji f dla argumentu x = 1− , c) Wyznacz równanie prostej BC, d) Oblicz długość odcinka BC. Zadanie 26. (SP07) Dany jest punkt C = (2,3) i prosta o równaniu y = 2x− 8 będąca symetralną odcinka BC . Wyznacz współrzędne punktu B . Wykonaj obliczenia uzasadniające odpowiedź. Strona wykorzystuje pliki cookies, by działać prawidłowo oraz do celów analitycznych, reklamowych i społecznościowych. OK, Rozumiem Privacy Overview This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience. Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Pomorze mi ktoś z tymi zadaniami 1 rozwiąż nierówności -x2+6x-5>0=2 wyznacz wszystkie pary licz spełniające jednocześnie obydwa równania 4x+y-6=0i2 … x2+y-y+3=0 Na teraz szybko zadania w załączniku Daje naj
Zadanie blockedDane są punkty A=(-3,2) i B=(3,-4).Odcinek AB ma długość proszę o rozwiązania szkolnaZadaniaMatematyka Odpowiedzi (3) SeVeeR -3 i 3 odległość to 6 2 i -4 odległość to 6 Powstaje trójkąt i pitagorasem się oblicza 6^2 + 6^2 = x^2x = 6 pierw. z 2 o 15:22 SeVeeR odpowiedział(a) o 15:41: Bo musisz to narysować. Wtedy widać że można trójkąt prostokątny zrobić i łatwo obliczyć z pitagorasa. Zexat 2(6 do kwadratu) = |AB| do kwadratu2*36 = |AB|72 = |AB| do kwadratupierwiastek z 72 = |AB|Pierwiastek z 8*9 = |AB|Trzy pierwiastki z 8 = |AB| o 15:25 Herhor Przecież masz już odp. z użyciem wzoru na odległość : [LINK] o 16:16
Rozwiązanie zadania. Skorzystamy ze wzoru na długość odcinka wyznaczonego przez dwa punkty A = ( x A, y A), B = ( x B, y B) w układzie współrzędnych: | A B | = ( x B − x A) 2 + ( y B − y A) 2. Obliczamy odległość między punktami o współrzędnych: A = ( − 3, − 2), B = ( 2, − 2). Korzystamy z powyższego wzoru:
Równanie prostej AB: \(\displaystyle{ y=\frac{1}{2}(x-1)}\) \(\displaystyle{ y=\frac{1}{2}x-\frac{1}{2}}\) Wszystkie proste równoległe do prostej AB opisuje równanie: \(\displaystyle{ y=\frac{1}{2}x+c ,c\in \Re}\) Szukamy takiej prostej, która przechodzi przez punkt P; podstawiając do równania współrzędne P, otrzymujemy \(\displaystyle{ c=2}\). Odległość dowolnego punktu \(\displaystyle{ (x,y)}\) od punktu A wyraża się wzorem \(\displaystyle{ \sqrt{(x-1)^{2}+y^{2}}}\) Odległość dowolnego punktu \(\displaystyle{ (x,y)}\) od punktu B wyraża się wzorem \(\displaystyle{ \sqrt{(x-5)^{2}+(y-2)^{2}}}\) Współrzędne punktu równoodległego od A i B spełniają zatem równanie: \(\displaystyle{ \sqrt{(x-5)^{2}+(y-2)^{2}}=\sqrt{(x-1)^{2}+y^{2}}}\) \(\displaystyle{ (x-5)^{2}+(y-2)^{2}=(x-1)^{2}+y^{2}}\) \(\displaystyle{ 24-8x=4y-4}\) \(\displaystyle{ 6-2x=y-1}\) Szukanym punktem jest punkt, którego współrzędne spełniają układ równań: \(\displaystyle{ \begin{cases} 6-2x=y-1 \\ y=\frac{1}{2}x+2 \end{cases}}\) odp. \(\displaystyle{ \left(2,3\right)}\) Sprawdź jeszcze 4 lutego 2009, 17:18 --Zeby sprawdzić, czy trójkąt ABC jest prostokątny, możesz np. obliczyć kwadraty długości jego boków: \(\displaystyle{ |AB|^{2}=32}\) \(\displaystyle{ |BC|^{2}=10}\) \(\displaystyle{ |AC|^{2}=10}\) Skoro \(\displaystyle{ |AB|^{2} \neq |BC|^{2}+|AC|^{2}}\), to trójkąt ABC nie jest prostokątny.
http://akademia-matematyki.edu.pl W układzie współrzędnych dane są punkty A=(a,6) oraz B=(7,b). Środkiem odcinka AB jest punkt M=(3,4). Wynika stąd, że
Opublikowane w przez Dane są punkty A=(−4,0) i M=(2,9) oraz prosta k o równaniu y=−2x+10. Wierzchołek B trójkąta ABC to punkt przecięcia prostej k z osią Ox układu współrzędnych, a wierzchołek C jest punktem przecięcia prostej k z prostą AM. Oblicz pole trójkąta dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2017 zadanie 33 Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia, że wylosujemy liczbę, która jest równocześnie mniejsza od 40 i podzielna przez 3. Wynik podaj w postaci ułamka zwykłego wpis Matura maj 2017 zadanie 31 W ciągu arytmetycznym (an), określonym dla n≥1, dane są: wyraz a1=8 i suma trzech początkowych wyrazów tego ciągu S3=33. Oblicz różnicę: a16−a13.
Dane są punkty: A = (–12, –9) i B = (–4, –3). Punkt B jest środkiem odcinka AC, a punkt D jest środkiem odcinka BC. 0) Odcinek CD stanowi 25% odcinaka
Dane są punkty A=(0,1), B=(3,4). Napisz równanie symetralnej odcinka AB.
. 165 351 91 495 37 372 154 450
dane są punkty a 4 0